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Introduction

Parkinson’s disease (PD)：degenerative neurological disorder related 
to striatal dopamine deficiency

Symptoms：slow movement, muscle stiffness and shaking
Prevalence：

0.1%~0.2% among the general population
2% among people aged over 65 years.
In Taiwan, the prevalence of PD is in a 7.9% yearly increase.

Detection of PD：functional imaging, ex. SPECT, PET
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Introduction

 Analysis Methods：
Voxels of the complete brain + dimensional reduction
Voxels of striatum  + feature selection or striatal binding ratio value
Shape and intensity distribution analysis

 Researchers have developed a number of methods for classifying subjects as either 
healthy or suffering from PD.

We developed system including a series of methods to deal with the multi-classes 
classification problem in PD stages.

 This system includes image preprocessing, imbalanced data preprocessing, and three 
kinds of models: traditional model, ensemble model and deep learning model.
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Structure
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Dataset

 Retrospective Experiment Designed
 Collect Time：from March 2006 to May 2014
 Data：99mTc-TRODAT-1 SPECT Imaging
 Imaging Format：DICOM (Digital Imaging and Communications in Medicine)
 Sample Size:：202 with 3D volume (128 pixel * 128 pixel * 𝑛𝑛 slices)
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Stage Normal Stage I Stage II Stage III Stage IV Stage V
Sample Size 6 22 27 53 87 7
Percentage 3% 11% 13% 26% 43% 3%
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SPECT 

 Single-photon emission computed tomography
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Image Preprocessing7
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Feature Extraction – PCA

A principle component analysis (PCA) is concerned with explaining the 
variance-covariance structure of a set of variables through a few “linear” 
combinations of these variables.

Objectives of a principle component analysis:
Dimension reduction: the total variability of 𝑝𝑝 variables can be accounted for by 
𝑘𝑘 principle components, where 𝑝𝑝 > 𝑘𝑘.
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Results of PCA9

Sample
Size

Training 
Data

Testing 
Data Total

Fold 1 161 41 202
Fold 2 161 41 202
Fold 3 162 40 202
Fold 4 162 40 202
Fold 5 162 40 202
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Imbalanced Data

 Under-sampling：This method will random pick samples from the majority classes
until each classes is balanced or reach the requirement. The rest part of the majority
classes samples will be ignored.
Advantage：increasing the sensitivity of a classifier to minority class.

Disadvantage：discard potentially useful information

 Over-sampling：New minority class data will be drawn with replacement by the
original data until each classes is balanced. It directly repeat the samples from the
minority classes.
Advantage：Unlike under-sampling, this method leads to no information loss.

Disadvantage：It increases the likelihood of overfitting since it replicates the minority
class events.
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Over-sampling – SMOTE

 Step 1：Considering a sample 𝑥𝑥𝑖𝑖 belonging to
minority class, select 𝑘𝑘 nearest-neighbors, which
also belong to minority class.

 Step 2： Randomly pick a sample 𝑥𝑥𝑛𝑛 from these
𝑘𝑘 nearest-neighbors.

 Step 3： A new sample 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 is generated as
follows:

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑥𝑥𝑖𝑖 + 𝜆𝜆 ∗ |𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑖𝑖|
where 𝜆𝜆 is a random number in the range [0, 1].

 Step 4： Repeat step 1 to step 3 until the
minority sample size is reach the requirement.
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Sample Size of Training Data Before/After SMOTE12
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Image Augmentation

Image augmentation artificially creates training images through 
different ways of processing or combination of multiple processing.

Traditional transformations：using a combination of affine 
transformations to manipulate the training data

For each input image, we generate duplicate images that are shifted, 
zoomed in/out, rotated, flipped, distorted, or shaded with a hue.
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Deep Learning – Image Augmentation14
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Traditional Model15
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Linear Discriminant Analysis (LDA)16
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Support Vector Machine (SVM)17
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Decision Tree (DT) – CART
 Step 1：Let the data at node 𝑚𝑚 be represented by 𝐷𝐷𝑚𝑚. For each candidate split 𝜃𝜃 = (𝑗𝑗, 𝑡𝑡𝑎𝑎)

consisting of a feature 𝑗𝑗 and threshold 𝑡𝑡𝑎𝑎, partition the data into 𝐷𝐷𝑙𝑙𝑛𝑛𝑙𝑙𝑙𝑙𝑚𝑚 (𝜃𝜃) and 𝐷𝐷𝑟𝑟𝑖𝑖𝑟𝑟𝑟𝑙𝑙𝑚𝑚 (𝜃𝜃)
subsets.

𝐷𝐷𝑙𝑙𝑛𝑛𝑙𝑙𝑙𝑙𝑚𝑚 𝜃𝜃 = 𝑗𝑗,𝑦𝑦 |𝑗𝑗 ≤ 𝑡𝑡𝑎𝑎
𝐷𝐷𝑟𝑟𝑖𝑖𝑟𝑟𝑟𝑙𝑙𝑚𝑚 𝜃𝜃 𝐷𝐷𝑚𝑚\D𝑙𝑙𝑛𝑛𝑙𝑙𝑙𝑙

𝑚𝑚 (𝜃𝜃)

 Step 2：For each candidate split 𝜃𝜃, the impurity at 𝑚𝑚 is computed using an impurity
function 𝐻𝐻(⋅). For CART, 𝐻𝐻(⋅) is Gini impurity.

𝐺𝐺 𝐷𝐷𝑚𝑚,𝜃𝜃 =
𝑛𝑛𝑙𝑙𝑛𝑛𝑙𝑙𝑙𝑙
𝑁𝑁𝑚𝑚

𝐻𝐻 𝐷𝐷𝑙𝑙𝑛𝑛𝑙𝑙𝑙𝑙𝑚𝑚 𝜃𝜃 +
𝑛𝑛𝑟𝑟𝑖𝑖𝑟𝑟𝑟𝑙𝑙
𝑁𝑁𝑚𝑚

𝐻𝐻 𝐷𝐷𝑟𝑟𝑖𝑖𝑟𝑟𝑟𝑙𝑙𝑚𝑚 𝜃𝜃

Gini Impurity：𝑝𝑝𝑚𝑚𝑚𝑚 = 1
𝑁𝑁𝑚𝑚

∑𝑥𝑥𝑖𝑖∈𝑅𝑅𝑚𝑚 𝐼𝐼 𝑦𝑦𝑖𝑖 = 𝑘𝑘 ⇒ 𝐻𝐻 𝐷𝐷𝑚𝑚 = ∑𝑚𝑚 𝑝𝑝𝑚𝑚𝑚𝑚(1 − 𝑝𝑝𝑚𝑚𝑚𝑚)

 Step 3：Select the parameters that minimize the impurity. 𝜃𝜃∗ = argmin
𝜃𝜃

𝐺𝐺(𝐷𝐷𝑚𝑚,𝜃𝜃)

 Step 4：Recurse for subsets 𝐷𝐷𝑙𝑙𝑛𝑛𝑙𝑙𝑙𝑙𝑚𝑚 𝜃𝜃∗ and 𝐷𝐷𝑟𝑟𝑖𝑖𝑟𝑟𝑟𝑙𝑙𝑚𝑚 𝜃𝜃∗ until the maximum allowable depth 
is reached, 𝑁𝑁𝑚𝑚 < min

𝑠𝑠𝑎𝑎𝑚𝑚𝑠𝑠𝑙𝑙𝑛𝑛𝑠𝑠
𝑜𝑜𝑜𝑜 𝑁𝑁𝑚𝑚 = 1.
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Neural Network (MLP)19
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Ensemble Learning20
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Ensemble Learning

Averaging methods：The driving principle is to build several 
estimators independently and then to average their predictions. On 
average, the combined estimator is usually better than any of the single 
base estimator because its variance is reduced.
 Example：Bagging, Random Forest

Boosting methods：Base estimators are built sequentially and one tries 
to reduce the bias of the combined estimator. The motivation is to 
combine several weak models to produce a powerful ensemble.
 Example：Adaptive Boosting, Gradient Tree Boosting
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Random Forest (RF)
 For a given number of trees 𝑇𝑇 in the 

forest and dataset 𝐷𝐷
 (1) For 𝑡𝑡 = 1,2,⋯ ,𝑇𝑇：

 (a) Dataset 𝐷𝐷𝑙𝑙 is drawn with 
replacement from 𝐷𝐷 at random.

 (b) Construct decision tree 𝐺𝐺𝑙𝑙(𝒙𝒙) by 𝐷𝐷𝑙𝑙. 

 (2) For classification problem, the 
class that the most classifier vote for 
is the final class. 
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Adaptive Boosting23
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Week classifier：
SVM、DT



Deep Learning24
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Deep Learning – CNN25

Introduction Methods Results Conclusion



Convolutional Neural Network (CNN)26
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• 𝐼𝐼 = 𝑊𝑊 ⋅ 𝐻𝐻 ⋅ 𝐷𝐷
• 𝐼𝐼：size of input layer
• 𝑊𝑊：width of input layer
• 𝐻𝐻：height of input layer
• 𝐷𝐷：depth or image channels

𝐷𝐷 = 3
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Transfer Learning – VGG1627

 Transfer Learning：
Transfer learning is a machine learning technique where a model trained on one 

task is repurposed on a second related task.
Transfer knowledge across tasks, instead of generalizing within a specific task.
For example, transfer image recognition knowledge from a cat recognition app to 

a radiology diagnosis.

 VGG16 (Visual Geometry Group)：
One of the best CNN model proposed (by Alex Krizhevsky et al) in 2014.
At the ILSVRC 2014 competition, an ensemble of two VGG Networks (VGG16 

and VGG19) received a top-5 error of 7.3%
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Deep Learning – VGG1628
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Results29



Implement and Tools30
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Traditional Model31

Summary
• All models perform well on Stage 4.
• All models didn’t perform well on Stage 0 & Stage 5.
• LDA, SVM and MLP outperformed DT.

Model
Train Test

Overall 
Accuracy

Sensitivity Overall 
AccuracyNormal I II III IV V

LDA 88.27% 16.67% (1) 36.36% (8) 22.22% (6) 35.85% (19) 62.07% (54) 0.00% (0) 43.56% (88)
SVM 99.95% 16.67% (1) 22.73% (5) 22.22% (6) 33.96% (18) 63.22% (55) 0.00% (0) 42.08% (85)
DT 99.86% 0.00% (0) 31.82% (7) 11.11% (3) 30.19% (16) 37.93% (33) 0.00% (0) 29.21% (59)

MLP 100% 16.67% (1) 36.36% (8) 22.22% (6) 30.19% (16) 63.22% (55) 14.29% (1) 43.07% (87)
Total 202 6 22 27 53 87 7 202
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Ensemble Model32

Summary
• All models performed well on Stage 4.
• All models didn’t perform well on Stage 0 & Stage 5.
• Averaging method RF outperformed other two 

boosting models.

Model
Train Test

Overall 
Accuracy

Sensitivity Overall 
AccuracyNormal I II III IV V

RF 100% 0.00% (0) 27.27% (6) 14.81% (4) 33.96% (18) 72.41% (63) 0.00% (0) 45.05% (91)
Ada+DT 100% 0.00% (0) 22.73% (5) 11.11% (3) 18.87% (10) 31.18% (28) 0.00% (0) 22.77% (46)

Ada+SVM 62.56% 0.00% (0) 31.82% (7) 18.52% (5) 22.64% (12) 45.98% (40) 28.57% (2) 32.67% (66)
Total 202 6 22 27 53 87 7 202
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Deep Learning Model33

Summary
• Almost every stage is about or higher than 60% accuracy
• Normal cases can be well separated from those whom suffering with PD.
• There are almost no difference between two optimizers.

Model
Train Test

Overall 
Accuracy

Sensitivity Overall 
AccuracyNormal I II III IV V

RMSprop 88.04% 83.33% (5) 59.09% (13) 70.37% (19) 58.49% (31) 68.97% (60) 57.14% (4) 65.35% (132)
Adam 86.77% 83.33% (5) 59.09% (13) 59.26% (16) 64.15% (34) 72.41% (63) 28.57% (2) 66.83% (135)
Total 202 6 22 27 53 87 7 202
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Summary34

Traditional Models Ensemble Models Deep Learning

Introduction Methods Results Conclusion



Conclusion35



Conclusion

We developed system including a series of methods to deal with the multi-classes 
classification problem in PD stages.

 This system includes image preprocessing, imbalanced data preprocessing, and three 
kinds of models: traditional model, ensemble model and deep learning model.

 Overall, VGG16 outperforms other models. 
 VGG16 and its related image preprocessing is a useful and better approach to 

develop multi-classes classification model.
 Future work：

Take advantage of the whole 3D brain imaging.
Investigate other advanced deep learning model, such as VGG19, ResNet50, 

Xception, Inception etc.
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THE END

Thank You
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